Laboratory exercise no. 12A. The manganometric determination of iron (only full-semester course)

Oxidimetric determinations are based on complete redox reactions in which electrons are transferred from a donator ion (or molecule) to an acceptor ion (or molecule):

- lodometry (e.g. for Cl₂, Br₂, Cu(I)...) $2 S_2 O_3^{2^-} + I_2 \rightarrow S_4 O_6^{2^-} + 2I^-$ (thiosulphate + I₂) \rightarrow (tetrathionate + I⁻) • Bromatometry (e.g. for Sb(III), As(III), Cu(I)...) BrO₃⁻⁺ + 6 H⁺ + 6 e \rightarrow Br⁻ + 3 H₂O
- Manganometry (e.g. for Ca²⁺, Fe²⁺, H₂O₂, oxalate...) $MnO_4^- + 8 H^+ + 5 e \rightarrow Mn^{2+} + 4 H_2O_4^-$

In manganometric determination of iron the first step is conversion of all the iron ions into Fe^{+2} (reduced form), because only this can be oxidized further by permanganate MnO_4^- . This is done using $SnCl_2$ solution in hot environment containing HCl, the process of reduction can be easily seen because Fe^{+3} ions form dark-brown complex with chloride anions, which disappear gradually during reaction. Some excess of $SnCl_2$ solution should be added to ensure the completeness of reduction.

$$Sn^{+2} + 2Fe^{+3} \rightarrow Sn^{+4} + 2Fe^{+2}$$

This excess of reductor, i.e. of Sn^{+2} cations, is after removed by their oxidization by HgCl₂. The latter reduces to Hg₂⁺² ions which form calomel (Hg₂Cl₂), insoluble in water and thus not oxidized by permanganate during the titration.

 $Sn^{+2} + 2 HgCl_2 \rightarrow Hg_2Cl_2 \downarrow + Sn^{+4} + 2Cl^{-1}$

Titration is done in large beakers (800-1000 mL) in presence of so-called Reinhard-Zimmermann mixture, using permanganate as the titrant.

 $5Fe^{+2} + MnO_4^{-} + 8H^+ \rightarrow 5Fe^{+3} + Mn^{+2} + 4H_2O$

The R-Z mixture contains H_2SO_4 (to ensure low pH of the reaction medium), phosphoric acid H_3PO_4 (ions Fe⁺³ formed during titration are colored, brown-yellow, but they form with phosphoric anions colorless complex; this is important because of the end-point detection, see below), and MnCl₂ (ions Mn⁺² present in solution lower the oxidizing potential of permanganates at the initial stage of titration)¹.

Titration is carried out until the titrant KMnO₄ colors the reaction solution to light red color.

Procedure

Students receive two identical samples of $FeCl_3$ in two beakers (at least 800 mL capacity each). Put glass bars to the beakers. Attention: these bars should never been removed from the beakers or exchanged between them until the analysis was finished!

- 1. Add 10 mL of concentrated HCl to each sample. Samples become darker.
- 2. Heat the sample almost to boiling and take off the fire. Add slowly SnCl₂ solution to it, drop by drop, stirring the content continuously with the glass bar. When the solution becomes colorless, add 2-3 drops of SnCl₂ more and leave to cool.
- 3. Add ca. 100 mL water and 10 mL of 5% HgCl₂ and stir shortly with the glass bar. Delicate, silk-like precipitate appears. If it becomes dark, the excess of SnCl₂ was too big, metallic Hg was formed, the analysis is lost and should be repeated.
- 4. Add 50-80 mL of R-Z mixture.
- 5. Titrate using 0.02 M KMnO₄, stirring continuously the content of beaker with your glass rod. When the solution is colored light red or pink and the color does not disappear during 10-15 seconds, the titration is finished.
- 6. The result is the arithmetic average of two independent titrations. If they differ by more than 3%, analysis should be repeated.

Source: textbooks

¹ The oxidizing potential of MnO₄⁻ is (Nernst equation): $E_{ox} = E_{MnO_4/Mn^{*2}}^0 + \frac{0.059}{5} \log_{10} \frac{[MnO_4^-] \cdot [H^+]^8}{[Mn^{+2}]}$. For [Mn⁺²]

close to zero, E_{ox} becomes very high and permanganate oxidizes chlorides: $2Cl \rightarrow Cl_2+2e^2$. This leads to error.